Tachometer TC-4B-V

Model number TC-4B-V

 $C \in$

Features

- Tachometer
- 4 decade devices
- LED indicator, red
- Counter frequency up to 10 kHz
- Power supply for pulse generator
- 8 adjustable operating modes
- Surface or built-in mounting
- Protection degree IP64 in accordance with DIN EN 60529 (front only)
- Shock resistance in accordance with DIN EN 60068-2-27
- Vibration resistance in accordance with DIN EN 60068-2-6

Data storage	10 years, EEPROM
Programming	via toggle switches and rotary switches
Indicators/operating means	
Туре	7-segment LED display, red
Number of decades	4
Display value	digit height 14,2 mm
Display interval	1 9999
Decimal point	freely adjustable
Scale factor	0.1 or 1
Reset	external

Electrical specifications

Technical data General specifications

90 ... 126 V AC Operating voltage 195 ... 264 V AC

Power consumption P₀ 14 VA

Counting frequency 10 Hz / 10 kHz 2,3 kOhm Impedance (positive logic)

low: 0 ... 6 V DC Voltage high: 16 ... 30 V DC

Output Linearity

Transistor PNP, open collector, 15 mA Analogue voltage output

Analogue current output 24 V DC, 50 mA Sensor supply

Reset External \leq 30 ms

Time delay before availability ≤ 0,5 ms ≤ 0,5 ms Jumpering time

Ambient conditions

Delay times

-10 ... 50 °C (263 ... 323 K) Ambient temperature -20 ... 70 °C (253 ... 343 K) Storage temperature Relative humidity 45 ... 90 % (non condensing)

Mechanical specifications

Connection

screw terminals max. core cross-section 0.34 ... 1.5 mm² approx. 450 g

96 x 48 x 105 mm

Mass **Dimensions**

Function

Tachometers are pulse-controlled time measuring devices.

In contrast to standard tachometers, which count the incoming pulses within a peak time, these tachometers evaluate the period of time between two consecutive input pulses (cyclic method). The period of time is assigned an adjusable multiplication factor and converted into a rotational speed in rpm or a velocity, depending on the mode of operation.

Advantage:

The cyclic method requires only one pulse per revolution and a maximum of two revolutions, in order to determine the rotational speed with high accuracy.

rotational speed = 1 / T x 60 min⁻¹

T = time between two pulses min⁻¹ = revolutions/minute

Electrical connection

Notes

Controls and indicators, front view

Controls and indicators, rear view

Table 1: Shift of decimal point

Switch	9999	999.9	99.99	9.999
2	OFF	ON	OFF	ON
3	OFF	OFF	ON	ON

Table 2: Operating modes

Switch / No.	1	2	3	4	5	6	7	8
4	OFF	ON	OFF	ON	OFF	ON	OFF	ON
5	OFF	OFF	ON	ON	OFF	OFF	ON	ON
6	OFF	OFF	OFF	OFF	ON	ON	ON	ON

Table 3: Number of measuring cycles

Switch / No.	1	10	100	100
7	OFF	ON	OFF	ON
8	OFF	OFF	ON	ON

Note on application:

Short measuring times with fluctuating input frequency reduce the measuring accuracy. The indicator becomes irregular and difficult to read. If the number of measuring cycles is increased to 10 or 100, the measured value is averaged and the indication is more accurate and readable.

Function of the rotary switches at the back

Setting of the multiplication factors

Display = Measured value x Factor x 10^N

Digital outputs and inputs (TC-4B-V)

Number		1	2	3	4	5	6	7	8	9	10	11	12	13	14
Identification on	В	1A	1B	2A	2B	3A	3B	4A	4B	Busy	Hold	0 V	24 V DC	NC	NC
circuit board	Α	1C	1D	2C	2D	3C	3D	4C	4D	Busy	Hold	0 V	24 V DC	NC	NC
	above B	1	2	1	2	1	2	1	2	Busy	Hold	0 V	24 V DC	NC	NC
Meaning of the	below A	4	8	4	8	4	8	4	8	Busy	Hold	0 V	24 V DC	NC	NC
signals		Dig	it 1	Digit 2		Digit 3		Dig	it 4	Outpu	Input	0 V	Input		
										t					

Operating modes

1. Rotation rate measurement

Example:

1 pulse/revolution, 1 measurement cycle, multiplication factor = 1, results in a display range of 10 ... 9999 RPM T1 \leq 6s, $f_{lnput} \geq$ 0,16 Hz = 10 1/min

2. Speed

10 ms \leq T1 \leq 6 sec Ta \geq 30 ms

3. Cycle times

10 ms \leq T1 \leq 140 sec Ta \geq 30 ms

4. Time differences

 $10~\text{ms} \leq T1 \leq 140~\text{sec}$ Ta $\geq 30~\text{ms}$

Operating modes

5. Time span

 $10 \text{ ms} \le T1 \le 140 \text{ sec}$ Ta $\ge 30 \text{ ms}$

6. Pulse count A

Pulses at IN A are counted as long as IN B 1 is at logic 1

 $T \ge 1 \text{ ms}$ $Ta \ge 20 \text{ ms}$

7. Pulse count B

The pulses at IN A are counted between two pulses at IN B

8. Pulse count C

The pulses at IN A are counted, logic 1 at IN B results in input pulse suppresion

